Electric Currents - Course Of Physics
Course Of Physics
Chapter I. Introduction And Measurement. Page
Chapter II. Molecular Forces And Motions.
Chapter III. Mechanics or Liquids.
Chapter IV. Mechanics Of Gases.
Chapter V. Force And Motion.
Chapter VI. Work And Energy.
Chapter VII. Heat, Its Production And Transmission.
Chapter VIII. Heat And Work.
Chapter IX. Magnetism.
Chapter X. Static Electricity.
Chapter XI. Electric Currents Produced By VoltaicCells.
- (1) Electrical Currents and Circuits
- (2) The Simple Voltaic Cell and its Action
- (3) Practical Voltaic Cells
Chapter XIII. Chemical And Heat Effects Of ElectricCurrents.
Chapter XIV. Induced Currents.
Chapter XV. Sound.
Chapter XVI. Light.
Chapter XVII. Invisible Radiations.
Chapter XVIII. Wireless Telephony And AlternatingCurrents.
CHAPTER XI
CURRENT ELECTRICITY
(1) Electrical Currents and Circuits
237. Sources of Electric Currents.?In studying the production and distribution of static electricity it was seen that if two bodies at different potentials are connected by a copper wire a movement of electricity to the body having the lower potential occurred along the conducting wire. This movement of electricity is called an electric current (Art. 227). A difference of potential is therefore often called an electromotive force (E.M.F.), since it produces the movement of electricity in a conductor. The current between two oppositely charged bodies lasts for so short a time as to be of little or no practical value unless some means are found for continually recharging the bodies. That is, some device must be used to restore the difference in potential as fast as the conducting wire equalizes it. The continual charging of the bodies takes work. In other words, it requires a continual expenditure of some form of energy (which is converted into electrical energy) to produce the electric current. Two forms of energy are commonly used for this purpose.(A) Chemical energy is employed in voltaic cells for producing electric currents. (B) Mechanical energy is used for the same purpose in the dynamo and similar devices.
238. The voltaic cell is named after Volta, an Italian physicist, who in 1800 invented it. In its simplest form it consists of a strip of copper and a strip of zinc placed in dilute sulphuric acid (one part acid to fifteen or twenty[Pg 268] of water) (Fig. 215). By the use of sensitive apparatus, it can be shown that the copper plate of the voltaic cell has a positive charge and the zinc plate a negative charge. For example, let a flat plate 10 cm. in diameter be placed upon the knob of an electroscope and a similar plate, coated with shellac and provided with an insulating handle, be set upon it to form a condenser. (See Fig. 216.) If now wires from the two plates of a simple voltaic cell be respectively connected to the plates of the condenser, charges from the copper and zinc plates will accumulate upon the two condenser plates. Now remove the wires and lift the upper plate. The "bound" charge upon the lower plate will spread over the leaves and cause them to separate. Upon testing, the charge from the zinc plate will be found to be negative and that from the copper plate, positive. Since a positive charge is found upon the copper plate it is called the positive electrode; the zinc plate is called the negative electrode.

Fig. 216.?Testing the charges upon the plates of a simple voltaic cell.


Important Topics
(a) Electric generators: (1) voltaic cell uses chemical energy; (2) dynamo uses mechanical energy.(b) Electric circuits: (1) open, (2) closed, (3) key and switch.
(c) Voltaic and galvanic electricity (names).
(d) Galvanoscope, uses.
Exercises
1. In what two ways are static and current electricity alike? In what two different?2. Draw a diagram of an electric bell circuit at your home. Give the location of the electric bell, the electric generator and the push-button. Show the connecting wires, and explain briefly how the circuit is operated.
3. Represent some other electric circuit, naming the generator and other devices in the circuit.
4. Look up the work of Volta and Galvani and write a statement of the electrical discoveries and inventions made by them.
(2) The Voltaic Cell and its Action
241. The simple voltaic cell consists of a strip of copper and a strip of zinc placed in dilute sulphuric acid. (See Fig. 219.) A short time after placing the plates in the acid, bubbles of a gas (hydrogen) appear on the surface of the zinc. These bubbles increase in size and some rise to the surface of the liquid. Nothing appears upon the[Pg 271] copper plate. If the tops of the plates are connected by a wire, an electric current is set up through the wire and the cell, and bubbles of gas also appear upon the copper as well as on the zinc. In a short time the surface of the copper becomes coated with bubbles and the current becomes much weaker. If the plates are left in the acid for some time the zinc is found to be eaten away, having been dissolved in the acid through chemical action. The copper, however, remains practically unaffected.
243. The Direction of the Current.[K]?Beginning at the surface of the zinc the direction of the movement of positive electricity may be traced through the liquid to the copper plate, to the wire, to the zinc plate, to the starting point, thus completing the electric circuit. When the circuit is closed it is found that the movement of electricity starts in all parts of the circuit at practically the same instant.

245. Polarization.?In the simple voltaic cell, after the circuit is closed, bubbles of hydrogen collect upon the copper plate. This accumulation of hydrogen gas is called polarization. It acts as a non-conducting layer upon the surface of the plate and seriously interferes with the movement of electricity from the liquid to the copper plate not only in the simple voltaic cell but in many others as well. Some voltaic cells are made entirely free from this defect, either (a) by the removal of the hydrogen as fast as it is formed, or (b) by the use of such chemicals that no hydrogen is produced.
246. Local Action.?It is noticed that when a strip of zinc is placed in dilute acid that bubbles appear upon the surface of the zinc. The appearance of these bubbles indicates that some of the hydrogen ions carrying positive electricity have moved to the zinc plate. Careful examination of the plate after it has been in acid shows numerous black spots upon it. These are bits of carbon. They are always found in ordinary zinc. Small electric currents are set up which run from molecules of pure zinc into the liquid and back to the carbon particles, thus forming small closed circuits. (See Fig. 221.) The formation of these circuits from and to the zinc is called local action. This action is a defect in voltaic cells since a part of the current is thus kept from passing through the main outside circuit, and the zinc may be consumed even when no outside current is flowing.

Important Topics
The Simple Voltaic Cell1. Two plates: zinc, copper; electrolyte, dilute sulphuric acid.
2. Ions: hydrogen, positive: sulphion, negative.
3. Current, where and how produced, direction, illustration.
4. Polarization: cure, local action, cure.
Exercises
1. Write in your own words an account of the production of an electric current by the simple voltaic cell. Use sketches.2. Which plate has the higher potential? How is it produced?
3. Would you expect to get an E.M.F. by forming a cell of two copper plates? Why?
(3) Practical Voltaic Cells
248. Advantages of Voltaic Cells.?Many forms of voltaic cells have been devised. Several of the more common of these will be described and their electro-chemical action explained.At the present time voltaic cells are employed only where small currents are needed, such as for electric bells and induction coils. Where more than a small amount of current is required, the dynamo and the storage battery have generally taken their place as sources of electric current.
The advantages of voltaic cells as electric generators are: (a) they are inexpensive, (b) they are easily taken from place to place, (c) they may be ready for instant use.
The most desirable voltaic cell would be one having the[Pg 275] following qualities: (a) High electromotive force, (b) no polarization or local action, (c) very low internal resistance, (d) small expense, both as to first cost and upkeep.

250. The Dry Cell.?Many forms of Leclanch? cells are made. One of these is called the dry cell (See Fig. 223.) In this cell the zinc plate is made into a jar or can and contains the other materials. At the center of the cell is a rod of carbon and manganese dioxide. The space between the carbon and zinc is filled with a porous material such as sawdust or plaster of Paris. A strong solution of sal ammoniac fills the porous material. The[Pg 276] top of the cell is sealed with pitch or wax to prevent evaporation. The great advantage of this cell is that it may be used or carried in any position without danger of spilling its contents. Dry cells are often used to operate the spark coils of gas and gasoline engines. The Leclanch? cell described in Art. 249 is commonly known as the "wet cell."


252. The Gravity Cell.?Fig. 225 is like the Daniell cell in most respects, except that in this cell, the zinc plate is held at the top of the jar in a solution of zinc sulphate while the copper plate is at the bottom, surrounded by a solution of copper sulphate. The solutions mix but slowly as the copper sulphate solution is denser and remains at the bottom. This cell like the Daniell must also be kept upon closed circuit. On account of its simplicity and economy it is often used to operate telegraph instruments. Its qualities are similar to those of the Daniell cell.


Fig. 227.?Diagram of a group of cells.

Important Topics
1. Leclanch? cells, (a), wet, (b), dry, construction, advantages, uses.2. Daniell and gravity cells, construction, advantages, uses.
3. Three effects of electric currents, illustrations.
4. The galvanoscope, uses.
Exercises
1. Explain how the direction of current in a wire can be determined by a compass.2. Would you expect to obtain a current from a zinc and copper cell containing a solution of common salt? Perform the experiment.
3. What conditions in a voltaic cell will give a steady electromotive force.
4. What conditions in a voltaic cell will give a strong electromotive force.
5. Name three different electric circuits that you know exist. Which are open and which are closed circuits?
6. Are voltaic cells used in your home? If so, for what purpose are they used? On open or closed circuits? Have you seen them? what kind are they?
Comments
Post a Comment