Light - Course Of Physics
Course Of Physics
Chapter I. Introduction And Measurement. Page
Chapter II. Molecular Forces And Motions.
Chapter III. Mechanics or Liquids.
Chapter IV. Mechanics Of Gases.
Chapter V. Force And Motion.
Chapter VI. Work And Energy.
Chapter VII. Heat, Its Production And Transmission.
Chapter VIII. Heat And Work.
Chapter IX. Magnetism.
Chapter XI. Static Electricity.
Chapter XI. Electric Currents Produced By VoltaicCells.
Chapter XII. Magnetic Effects Of Electric Currents,And Electrical Measurements.
Chapter XIII. Chemical And Heat Effects Of ElectricCurrents.
Chapter XIV. Induced Currents.
Chapter XV. Sound.
Chapter XVI. Light.
- (1) Rectilinear Propagation of Light
- (2) Photometry and Law of Reflection
- (3) Mirrors and Formation of Images
- (4) Refraction of Light
- (5) The Formation of Images by Lenses
- (6) Optical Instruments
- (7) Color and Spectra
- (8) Nature of Light 442
Chapter XVIII. Wireless Telephony And AlternatingCurrents.
CHAPTER XVI
LIGHT
(1) Light, Its Rectilinear Propagation, Shadows
352. A Comparison of Sound and Light.?Light from the standpoint of physics is considered much as is sound, as a mode of motion; one affecting the ear, the other producing the result called vision. There are other differences also worth considering. (a) While sound travels as vibrations of some material medium, light travels only as vibrations of the ether; solids, liquids, and gases act so as to hinder rather than to assist in its movement. That is, light travels best in a vacuum or in a space devoid of ordinary matter. (b) The speed of light is so great that at ordinary distances on the earth its motion is practically instantaneous. Experiments have shown that its speed is about 186,000 miles to 300,000 kilometers a second.353. Luminous and Illuminated Bodies.?If we consider the objects within a room, some of them, as books and furniture, would be invisible if all light from external sources were excluded. On the other hand, some other objects, such as a lighted lamp, a burning coal, or a red hot iron, would be seen if no outside light were present. Such bodies are said to be luminous. Most luminous bodies are hot and become non-luminous on cooling. There are, however, some bodies that are luminous at ordinary room temperatures, as the firefly and some phosphorescent paints. When light emitted by a luminous body strikes an object, a portion of it is always reflected.[Pg 389] It is this reflected light that makes the illuminated object visible. If the object is a sheet of glass, some of the light is transmitted. If a substance is so clear that objects can be seen through it, the substance is transparent, but if objects cannot be seen through it, the substance is said to be translucent. Objects transmitting no light are opaque. Some of the light falling upon a body is neither reflected nor transmitted, but is absorbed and tends to warm the body. The light falling upon a body is therefore either reflected, transmitted, or absorbed. Thus Fig. 345 represents light coming from S to a piece of glass GL. A portion of the light represented by R is reflected. Another part A is absorbed and disappears, while still another part T is transmitted and passes on.
354. The Rectilinear Propagation of Light.?If a beam of light passes through a hole in a window shade into a darkened room, it is seen to follow a perfectly straight course. If a person while coughing holds a book before the face, the sound passes around the book and is heard[Pg 390] at any point in the room while the face is hidden by the book. In other words, light ordinarily does not pass around corners as sound does, but travels in straight lines. This fact is made use of when one aims a gun or merely looks at an object. So well established in our minds is the idea that an object is in the direction from which we see the light coming to us from it, that we are sometimes deceived as to the real position of an object, when the course of the light from it has been changed by a mirror or some other reflecting surface. Many illusions are produced in this way, of which the mirage of the desert is one example. (See Art. 381.)
357. Images by Small Apertures.?The straight line movement of light makes possible the pin-hole camera, by which satisfactory photographs have been made. The action of this device may be illustrated by placing a luminous body, a lighted candle, an incandescent lamp, or a gas flame, in front of a piece of cardboard, S, which has a small opening in it. Light from the object (see Fig. 349) falls upon a screen, S2, so as to produce an inverted image. Other applications of this principle will be given later.
[Pg 392]
In Fig. 349 let PQ represent a gas flame, then light from point P at the top of the flame will pass in a straight line through the opening or aperture of the cardboard and strike at P2 at the bottom of the illuminated spot upon the screen. Light from Q passing in straight lines through the aperture will strike at Q2 at the top of the lighted space. This spot of light will have the same outlines as the luminous body PQ and being formed as just described will be inverted.
Important Topics
1. Light contrasted with sound (three differences).2. Bodies: transparent, translucent, opaque.
3. Light: reflected, transmitted, absorbed.
[Pg 393]
4. Light travels in straight lines, evidence, shadows, umbra, penumbra.
5. Formation of images by small apertures.
Exercises
1. Consider the circumference of the earth as 25,000 miles. How many times would the speed of light cover this distance in a second?2. How soon after any great disturbance takes place on the sun, 93,000,000 miles distant, can it be seen upon the earth?
3. Construct a diagram of the moon's shadow. How much of the sun can one see when in the moon's umbra? When in its penumbra? Have you ever been in either? When? Have you ever been in the earth's umbra? In its penumbra?
4. Explain, using a diagram, the formation of an inverted image by a small aperture.
5. If the sun is 45 degrees above the horizon, what is the height of a pole casting a shadow 60 ft. long?
6. If a shadow 6 ft. long is cast by a 10-ft. pole standing vertically upon a walk, how tall is the tree whose shadow is 42 ft. long, both measurements being made at the same time?
7. Why are the shadows caused by an electric arc lamp so sharply defined?
8. Why should schoolroom windows be all on one side and reach to the ceiling?
9. What is the relation between the size of an image and its distance from the aperture forming it? Can you prove this by geometry?
10. What are silhouettes and how are they produced?
(2) Photometry and the Law of Reflection
358. Photometry.?It is desirable at times to compare the intensities of illumination produced by light from different sources. This is done to determine the relative cost or effectiveness of various illuminants such as candles, kerosene and gas lamps, and electric lights The process of determining the relative intensity of lights or lamps is called photometry. (Photos = light.)[Pg 394]
The unit for measuring the power of light is called a candle power. It is the light produced by a sperm candle burning 120 grains per hour. An ordinary gas light burns 5 or more cubic feet of gas per hour and yields from 15 to 25 candle power. A Welsbach gas lamp, consuming 3 cu. ft. per hour, produces 50 to 100 candle power.
Instead of using candles, for practical photometry, incandescent lamps standardized by the Bureau of Standards are used for testing or calibration purposes.
It is necessary to distinguish between the intensity of a luminous body, i.e., as a source of light, and the intensity of illumination upon some surface produced by a light. It is considered that two sources of light are of equal intensity if they produce equal illumination at equal distances.
359. Law of Intensity of Light.?A device for measuring the candle power of a light is called a photometer. Its use is based upon the law of intensity of light. The intensity of illumination of a surface is inversely proportional to the square of its distance from the source of light. This relation is similar to that existing between the intensity of a sound and the distance from its source. The following device illustrates the truth of this law in a simple manner.
Cut a hole 1 in. square in a large sheet of cardboard (K) and place the card in an upright position 1 meter from an arc light or other point source of light (L). Now rule inch squares upon another card (M)
and place it parallel to the first card and 2 meters from it. (See Fig.
350.) The light that passed through the hole of 1 sq. in.[Pg 395]
at a distance of 1 meter is spread over 4 sq. in. at a distance of 2
meters. Therefore, the intensity of illumination on each square inch of M is one-fourth that upon the surface of K. If M is placed 3 meters from the light, 9 sq. in. are illuminated, or the intensity is one-ninth that at 1 meter distance.
360. Measurement of the Intensity of Illumination.?A standard candle (Art. 358) produces when lighted 1 candle power. The illumination caused by this upon a surface 1 ft. away and at right angles to the light rays[Pg 396] is called a foot-candle. It is the unit of intensity of illumination. A 4-candle-power lamp, at a distance of 1 ft., produces 4 foot-candles. A 16-candle-power lamp at a distance of 2 ft. also produces 4 foot-candles?(16 ? 22).
The intensity of illumination required for a good light for seeing varies with the conditions. Thus, for stage and store lighting about 4 foot-candles are needed, while homes and churches may require but 1 foot-candle.
Too great an intensity of illumination is as harmful as not enough. Exposed lights having an intensity of more than 5 candle power per square inch are often a cause of eye trouble. Such lights should be protected by frosted globes.
A pleasing form of lighting for large halls and public buildings is the indirect system. In this, the lamps are hidden by reflectors which throw the light upon the ceiling from which it is diffused over the room. This form of lighting is more expensive than other systems since but a part of the light is reflected. Its cost therefore is an important factor when considering its use.
361. The Reflection of Light.?The light reflected from the surfaces of bodies about us gives us information concerning our surroundings. A knowledge of the behavior of light undergoing reflection is not usually gained from ordinary observation. The law of reflection of light may be shown, however, by an experiment.
[Pg 398]
[Pg 399]
A plane mirror, M, is held in a vertical position resting upon a sheet of paper. (See Fig. 352.) Pins are set upright in the paper at A and B. On placing the eye along the line AC and looking toward the mirror an image of B may be seen in the mirror due to the light reflected from its surface. Pins C and D are now set in the paper so that when one looks along the line BD toward the mirror one may see all four pins apparently in one line. This indicates that the light from A and C passing along CA toward O is reflected back along the light CBD. By means of a ruler, draw lines through BD and AC till they intersect at O. Also draw PO perpendicular to the mirror at O.
Then the angles AOP and BOP will be found equal. These are called the angles of incidence and reflection respectively. The law of reflection is therefore stated: The angle of reflection is equal to the angle of incidence.
These angles are in the same plane, that of the paper. This law applies
in all cases of reflection of light. It is similar to the law of
reflection of sound (Art. 326.)Important Topics
1. Photometry, law of intensity, candle power, foot-candle.2. Intensity of illumination.
3. Reflected light and law of reflection.
Exercises
1. Both sides of a card are equally illuminated when two lights are on opposite sides of it and 10 and 30 cm. respectively from it. what are their relative intensities?2. What are the relative intensities of illumination from a gas light upon a book 6 ft. and 2 ft. respectively from the light?
3. Which is more expensive per candle power? How many times as expensive? A 50-watt 16-candle-power incandescent lamp at 10 cents per kilowatt-hour or a 100-candle-power Welsbach light burning 5 cu. ft. of gas per hour at 80 cents per 1000 cu. ft. of gas. (Find cost of each per hour, and then the cost of 1 candle power hour for each.)
4. Why are not ordinary shadows perfectly dark?
5. At what distance will a 16-candle-power lamp give the same illumination as a single candle at 10 in.?
6. If the sun is at an elevation of 30 degrees what is the angle of incidence at which it strikes the surface of water? What is the angle between the incident and the reflected rays?
[Pg 400]
7. What is the difference between the phenomena of reflection of light from a white sheet of writing paper and from a piece of clear window glass?
8. A horizontal ray of light, traveling due east, strikes a vertical mirror so that after reflection it is traveling due north. If the mirror be now turned 10 degrees about a vertical axis, the north edge moving east, what will be the direction of the reflected ray?
9. The necessary illumination for reading is about 2 foot-candles. How far away may an 8-candle-power lamp be placed?
10. What is the illumination in foot-candles upon a surface 20 ft. from an arc lamp having an intensity of 1000 candle power?
11. How far from a 100-candle-power Welsbach light would the illumination be 2 foot-candles?
(3) Mirrors and the Formation of Images
363. Images Formed by a Plane Mirror.?The most common use of mirrors is in the formation of images. The way in which images are formed by a plane mirror may be illustrated by diagrams. Thus in Fig. 354, let L represent a luminous body and E and E? two positions of the observer's eye. Take any line or ray as LO along which the light from L strikes the mirror O-O?. It will be reflected so that angle LOP equals angle POE. Similarly with any other ray, as LO?, the reflected ray O?E? has a direction such as that angle L?O?E? equals angle P?O?E?. Any other rays will be reflected in a similar manner, each of the reflected rays appearing to the eye to come from a point L? behind the mirror.
367. Multiple Reflection.?If the light from an object is reflected by two or more mirrors various effects may be produced, as may be illustrated by the kaleidoscope. This consists of three plane mirrors so arranged that a cross-section of the three forms an equilateral triangle. The mirrors are placed in a tube across the end of which is a compartment with a translucent cover containing pieces of colored glass. On looking through the tube, the reflections from the several surfaces produce beautiful hexagonal designs.
370. Virtual Images by Concave Mirrors.?When light comes from a small point situated between a concave mirror and its principal focus, the reflected rays are divergent and hence no real image of the object can be found in front of the mirror. But if the rays are extended behind the mirror they will meet in a point called the virtual focus. This is the point from which they appear to come. Any image of an object situated between the principal focus and a concave mirror is therefore a virtual image, erect and larger than the object. (See Fig. 361.)
The points A and a, B and b and others similarly situated on an axis extending through the center of curvature C are called conjugate foci, for they are so related that an object being at either one, its image will be found at the other.
374. Parabolic Mirrors.?The best possible surface to give to concave mirrors is parabolic. This is a curve which may be generated by moving a point so that its distance from a fixed point and a fixed line are always equal. If a source of light is placed at F the rays after reflection are rendered parallel. See Fig. 365. This reflector is used in automobile lamps, headlights of locomotives, search-lights, etc. It is also used in large reflecting astronomical telescopes to collect as large an amount of light as possible from distant stars and bring it to a focus. Such mirrors may be made exceedingly accurate.
Important Topics
1. Reflection: regular, diffused; plane mirrors; laws of reflection.2. Formation and location of images by plane mirrors. Wave and ray diagrams.
3. Multiple reflection, illusions.
4. Curved mirrors, uses; concave, convex, parabolic.
Exercises
1. Distinguish between regular and diffused reflection. By means of which do we see non-luminous bodies?2. Could a perfect reflecting surface be seen? Explain.
3. A pencil is stood upright in front of a plane mirror set at an angle of 45 degrees to the vertical. Shown by a diagram the location and position of the image.
4. Show by diagrams the position and location of the images of a pencil (a) when standing erect and in front of a vertical mirror. (b) when standing upon a horizontal mirror.
5. What is the difference between a real and a virtual image?
[Pg 410]
6. A standard candle and a lamp give equal illuminations to a screen that is 1 ft. from the candle and 6 ft. from the lamp. What is the candle power of the lamp? Explain.
7. Why are walls finished in rough plaster or painted with soft tones without gloss better for schoolrooms than glossy paints or smooth white plaster?
8. Try to read a printed page by looking at its image in a mirror. write your name backward on a sheet of paper, and then look at the image of the writing in a mirror. What effect is produced by the mirror in each case?
9. If the point of a pencil is held to the surface of a piece of plate-glass mirror two or more images may be seen in the mirror. Explain.
10. Given a small lighted candle, a concave mirror, a meter stick, and a white screen, how would you prove the statements made in Arts. 369 and 370 concerning the location of images formed by concave mirrors? Make the diagram in each case.
11. Why do images seen in a quiet pond of water appear inverted? Explain by a diagram.
(4) Refraction of Light
375. Common Examples of Refraction.?Everyone has noticed the apparent bending of an oar, of a stick, or of a spoon when placed in water (see Fig. 366), while many have observed that the bottom of a pond or stream looks nearer to the surface than it really is. These and similar illusions are due to the refraction or bending of light rays as they pass from one medium to another. The principles of refraction are among the most useful found in the study of light since application is made of them in the construction and use of important optical instruments, such as the camera, microscope, telescope, and the eye.376. Action of Light Undergoing Refraction.?If a beam of sunlight be admitted to a darkened room and reflected by a mirror so that it strikes the surface of water in a glass jar, a part of the beam may be seen to be reflected while another portion is transmitted through the water (Fig. 367). The reflected beam follows the law of reflection while the transmitted beam is seen to be refracted, or to have its courses slightly changed in direction upon entering the water. If the mirror is turned so that the angle at which the light strikes the water is changed, the amount of refraction or change of course of the light is varied. When the light strikes the water perpendicularly there is no refraction. On the other hand, the greater the angle at which the light strikes the water the greater the bending.
378. The cause of refraction may be illustrated by considering a line of men moving across a field and occupying at equal time intervals the successive positions 1, 2, 3, etc., indicated in Fig. 369. Suppose that the upper and lower parts of the field have a smooth hard surface, while at the center is a strip of newly ploughed ground. The line will move more slowly over the ploughed field than over the hard field. This will result in a retardation of the end of the line first striking the soft ground with a resulting change of direction of the line, toward the perpendicular to the edge of the field (on entering the place of more difficult travel), and away from the perpendicular on moving into a place where increased speed results.
The mirage (see Fig. 375) is an optical illusion by which distant
objects, below the horizon, are sometimes plainly seen. This phenomenon
is most frequently observed in hot, desert regions, when the air
conditions are such that the lower strata near the ground are very much
hotter than those above. These lower strata, having expanded the most,
are less dense than the cooler ones above. Hence a ray of light
traveling obliquely downward is refracted more and more until total
reflection takes place. The images seen are inverted[Pg 415]
giving a representation of trees or other objects reflected on the
surface of still water. The mirage is also frequently seen at sea, ships
being observed, sometimes erect, sometimes inverted, apparently sailing
in the clouds near the horizon. Over the Great Lakes, trees, boats, and
towns on the opposite shore, sixty or seventy miles away, can sometimes
be plainly seen, apparently but a few miles out. In this case the
images are erect, the total reflection being from warm, still layers of
air over colder layers near the water.
Important Topics
(A) Refraction: cause, illustration, two principles.(B) Index of refraction, meaning.
(C) Plates, prisms, lenses, action of each.
(D) Total reflection, uses.
Exercises
1. Compute the speed of light in water, the index of refraction being 1.33.2. If one wished to shoot a fish under water, should he aim at the apparent location of the fish as viewed from the air? Explain, using a diagram.
3. Define refraction. Mention two illustrations of this action that you have observed out of school.
4. Why does the moon look larger near the horizon?
5. Is your reflection seen in a pool of water upside down? Why?
6. Why does it whiten molasses candy to pull it?
7. When looking at a building through the ordinary glass of a window why do straight lines of the building appear to be so distorted? What makes them appear to move as you move your head slightly?
[Pg 416]
8. Explain the phenomenon which one observes when looking at an object through the air arising from a hot stove or radiator.
9. Frequently the horizontal diameter of the setting sun appears to be greater than the vertical. Explain.
10. Explain why one observes several images of a luminous body like a lighted candle when the reflected light from a thick glass mirror enters the eye, the angle of reflection being large.
(5) The Formation of Images by Lenses
382. Uses of Lenses in Optical Instruments.?The use of instruments that employ lenses in their operation, such as spectacles, reading and opera glasses, and the camera, microscope, and telescope, is familiar to most students of physics. The part played by the lenses, however, is not generally understood. Consequently the study of the formation of images by lenses is of general interest and importance.383. Forms of Lenses.?While a lens may be formed from any transparent solid it is commonly made of glass. It may have two curved surfaces or one curved and one plane surface. Most lenses are spherical lenses, since their curved surfaces form a part of the surface of a sphere. Fig. 376 represents a spherical lens with a curved surface coinciding with that of a sphere whose center is at C. This center is called the center of curvature, while the radius of the sphere R, is the radius of curvature.
[Pg 417]
This point is called a virtual focus and is nearly at the center of the curvature of the nearer surface.
(A) If a luminous body is at a great distance at the left, its light is brought to a focus at P, or its image is formed at P. (B) As the object approaches the lens the image gradually recedes until the object and image are at S and S?, equally distant from O and of equal size (as in Fig. 383). The object and image are now said to be at the secondary foci of the lens. (C) As the object moves from S to P the image recedes, rapidly increasing in size until (D) when[Pg 421] the object is at P the rays become parallel and no image is formed. (E) When the object is between P and the lens, the rays appear to proceed from points back of the object, thus forming an erect, larger, virtual image of the object. (See Fig. 384.) This last arrangement illustrates the simple microscope.
With a concave lens but one case is possible, that corresponding to the one last mentioned with convex lenses; since the rays from a body are divergent after passing through a concave lens they appear to proceed from points nearer the lens than the object and hence a virtual, erect, smaller image of the object is formed. This virtual image may be seen by looking through the lens toward the object. (See Fig. 385.)
Important Topics
(A) Lenses: convex, concave, six forms, center and radius of curvature.(B) Principal focus, focal length, virtual focus, conjugate foci.
(C) Principal axis, images formed when object is in various locations.
(D) Computation of location of images.
Exercises
1. Why is an image of a candle formed by an aperture, not sharply defined?2. When a photographer takes your picture and moves the camera nearer you, must he move the ground glass screen toward the lens or away from it? Explain.
3. How can you find the principal focal length of a lens.
4. How can you test a spectacle lens to see whether it is convex concave?
5. When will a convex lens produce a virtual image? Have you ever seen one? Where?
6. When a photographer wishes to obtain a full length view of a person, where does he place the camera?
7. The focal length of the lens is 24 cm. How far from the lens must an object be placed in order that a real image may be three times as long as the object?
8. There is a perfect image of an object on the ground glass of a camera. The center of the lens is 20 cm. in front of the image[Pg 423] and the object 75 cm. from the lens. What is the focal length of the lens?
9. An object is 60 cm. from the lens, the image 120 cm. from it. Find the focal length.
10. How can you find experimentally the principal focal length of a lens?
11. A lens is used to project an enlarged image of a candle upon a screen. Which is farther from the lens, the candle or the image? Explain.
(6) Optical Instruments
389. The Eye.?The most common optical instrument is the eye. While the structure of the eye is complicated, the principle of it is simple, involving the formation of an image by a double convex lens. (See Fig. 386, in which is shown a front to back, vertical cross-section of the eye.) The eye appears to be made of portions of two spheres, one of which, smaller than the other, is placed in front. This projecting part is transparent, but refracts the light which strikes it obliquely, so as to turn it into the eye. This enables us to see objects at the side when looking straight ahead. Test this by looking directly in front of you and see how far back on each side of the head you can notice a movement of the forefinger of each hand.395. The compound microscope consists of two lenses. One called the objective is placed near the object to be viewed. This lens has a short focal length usually less than a centimeter. It forms a real image of the object. A?-B?. The other lens, the eyepiece forms a virtual image of this real image. A??-B??. (See Fig. 396.)
[Pg 428]
396. The telescope consists of two lenses, the eyepiece and the objective. As in the compound microscope, the objective of the telescope forms a real image of the distant object, the eyepiece forming an enlarged virtual image of the real image. It is the virtual image that is viewed by the observer. (See Fig. 397.) In order to collect sufficient light from distant stars the objective is made large, sometimes 50 in. in diameter.
Important Topics
1. The eye: parts, formation of image, kind, how, where.2. Eye defects, how remedied. Visual angle.
3. Simple microscope, camera; images, kind, how formed.
4. Compound microscope, telescope and opera glass; images, action of each lens.
Exercises
1. Name three instruments in which lenses form virtual images and three in which real images are formed.2. In what direction is an oar in water apparently bent? Explain by a diagram.
3. What optical instruments have you used? Is the visible image formed by each of these real or virtual?
4. The focal length of a copying camera lens is 14 in. Where must a drawing be placed so that an image of the same size may be formed upon the ground glass screen? What must be the distance of the screen from the lens?
5. What are two methods by which you can determine the focal lengths of the lens of a photographic camera?
6. The critical angle for water is 48-1/2 degrees. Show by a diagram how much of the sky can be seen by a diver who looks upward through the water.
7. How is near-sightedness caused? How is it corrected? Illustrate by a diagram.
8. How is the eye accommodated (focused) as an object gradually approaches it?
9. Explain why a simple microscope assists in looking at the parts of a flower or insect.
10. Why do people who have good eyesight when young require glasses as they grow old?
(7) Color and Spectra
[Pg 433]
399. Color.?Much of the pleasure experienced in gazing at beautiful objects is due to the color shown by them. The blue sky, the green grass, and the varied tints of flowers, and of the rainbow all excite our admiration The study of color begins naturally with the production of the spectrum, the many-colored image upon a screen produced by passing a beam of light through a prism. The spectrum is best shown when the light enters by a narrow slit (Fig. 400). The spectrum was first produced by Sir Isaac Newton in 1675 by the means just described. The names usually given to the more prominent colors of the spectrum are violet, indigo, blue, green, yellow, orange, and red. The initials of these names, combined, spell vibgyor, a word without meaning except to assist in remembering the order of the colors in a spectrum. If the light that has passed through a prism is sent through a second prism placed in reverse position (see Fig. 401), the light passing through both prisms is found to be white. This experiment indicates that white light is composed of light of all colors.
Now place in different parts of the spectrum objects of various
colors. Red objects will show brilliant red when at the red end of the
spectrum but look black at the blue end, while blue objects appear blue
only at the blue end.
These facts indicate that the color of an object depends upon two things: (a) the light that falls upon it and (b) the light which it sends to the eye. A black surface absorbs all color while a white
one reflects all wave lengths to the eye in the same proportion that
they come to it. A white object will appear red in red light, and blue
in blue light since it reflects both of these. A colored object
reflects light of its own color but absorbs all others. The color then
of a body is due to the light which it does not absorb, but which comes
from it to the eye.403. The color of transparent bodies, such as colored glass, is due to the presence of a dye or pigment contained in the body. This pigment absorbs a part of the light, the part transmitted giving the color. This may be shown by holding a sheet of colored glass in a beam of light either before or after it has passed through a prism. Some colors, as red, may be found to be nearly pure, only the red passing through, while green glass often transmits in addition to the green some yellow and some red light.
[Pg 436]
404. Complementary Colors.?If two prisms are placed in reversed position near each other (see Fig. 401), a beam of light dispersed by one is recombined into white light by the other. If now a card is held between the two prisms so as to cut off some of the colored light, say the red, the remaining light will be found to form a greenish blue. If the card is removed, the light becomes white again. That is, red and peacock blue light together form white. Any two colors that together form white light are called complementary. Other complementary colors are light yellow and blue, green and crimson, orange and greenish blue, violet and greenish yellow. We must not confuse the combining of colors (light) and the combining of pigments, the latter consisting of bodies that absorb light. Yellow pigment absorbs all but yellow and some green, while blue pigment absorbs all but blue and some green. Mixing these two pigments causes the absorption of all colors but green. Blue and yellow paint mixed produce green, while blue and yellow light give white.
405. The solar spectrum, as the spectrum of sunlight is called, may be observed in the rainbow. The latter is produced through the dispersion of light by spherical raindrops. Its formation may be imitated by sending a small circular beam of light through a screen against a round glass flask filled with water. (See Fig. 404.) The light passes through the water and is dispersed when it enters and when it leaves, producing a color upon the screen at R-V. The course of the light within the drop is indicated in Fig. 405. The violet ray comes to the eye more nearly horizontal and is therefore below red, as we look at the rainbow.
406. Fraunhofer Lines.?Some of the most important features of the solar spectrum are not seen in the rainbow or in the band of light usually observed upon a screen.[Pg 437] By the use of a narrow slit and a convex lens to carefully focus the slit upon a white screen it is seen that the solar spectrum is crossed by many dark lines. These are called Fraunhofer lines, to honor the German scientist who in 1814 first accurately determined their position. Two experiments with a spectroscope will help to make clear the meaning of the Fraunhofer lines.
407. The Spectroscope and Its Uses.?The spectroscope (Fig. 406) is an instrument for observing spectra. It consists of a prism, a slit, and a convex lens T for focusing an image of the slit accurately upon a screen (Fig. 407) where the spectrum is observed through the eyepiece E.
408. Theory of Color Vision.?By combining light of the three colors red, green and blue-violet in proper proportions, it has been found possible to produce any color effect, even white. This leads to the conclusion that in the retina of the eye are three different kinds or sets of sensitive nerve endings, sensitive respectively to red, to green, and to blue light. This idea is given corroboration by some facts of color blindness. Thus some persons have no sensation of red, this color not being distinguished from green. Others are color blind to green or blue. It is supposed that in color blind persons one of the sets of nerve endings sensitive to one of these three colors is lacking.
409. Three-color Printing.?Since all colors may be produced by mixing the three colors, light red, green, and blue-violet, these are called the three primary colors. The so-called primary pigments or paints are simply the complements of the three primary colors. They are, in order, peacock blue, crimson, and light yellow. The three pigments when mixed yield black, since combined they absorb all kinds of visible light. The process of three-color printing, now so generally employed in printing colored pictures for books, calendars, etc., consists in combining upon white paper three colored impressions,[Pg 441] using successively the three primary pigments (yellow, crimson and blue) from plates prepared as follows:
Three photographs of a given colored object are taken, each through a different sheet of gelatine called a filter, stained the color of one of the primary colors. From these photographs half-tone blocks are made in the usual way. The colored picture is made by carefully superposing impressions from these blocks, using in each case an ink whose color is the complement of the "filter" through which the original picture was taken. An illustration of the process is given upon the plate in the frontispiece of this book.
Important Topics
1. Color, due to wave length; dispersion by prism, sphere in rainbow, complementary colors, color of opaque and transparent bodies.2. Spectra, solar; formation of rainbow; bright-line spectra, how formed, how used; dark-line, how formed, used.
3. Theory of color vision. Three color printing.
Exercises
1. How does a white flower look when viewed through a blue glass? Through a red glass? Through a red and blue glass at the same time?2. Why does a red ribbon appear black when seen by blue light and red when seen by red light?
3. In what part of the sky must you look to see a rainbow in the morning? In the afternoon? Explain.
4. How would you arrange two similar prisms so as to produce double the deviation produced by one?
5. The color of an object depends upon what two things?
6. What kind of a spectrum should moonlight give? Why?
7. A mixture of green and red lights gives a sensation of yellow. Can you suggest why a mixture of blue and yellow lights gives the sensation of white?
[Pg 442]
(8) Nature of Light, Interference, Polarization
410. The Corpuscular Theory.?The theory of the nature of light that was most generally accepted until about the year 1800, held that light consists of streams of minute particles, called corpuscles, moving at enormous velocities. This corpuscular theory was in accord with the facts of reflection and the rectilinear motion of light, but was abandoned after the discovery of the interference of light, as it could not account for the latter phenomenon.411. The Wave Theory of Light.?The theory that light is a form of wave motion was first advanced by Huygens, a Dutch physicist, in the seventeenth century. This theory was opposed at the start since (A) no medium was known to exist which would convey wave motion through space, as from the sun to the earth, and (B) the rectilinear motion of light was unlike that of any other form of known wave motions, such as that of water or of sound waves which are able to bend around corners. In answer to the first objection, Huygens assumed the presence of a medium which he named ether, while the second objection has been completely overcome during the past century by the discovery that light may deviate from a straight line. It is now known that the excessive shortness of light waves is the reason for its straight-line motion. Further, long ether waves, as those of wireless telegraphy, are found to bend around obstacles in a manner similar to those of water or sound.
413. Differences Between Light and Sound.?Among the important differences between light and sound that have been considered are the following: the former are (a) waves in the ether, (b) of very short wave length, and (c) their motion is in straight lines. Another difference (d) is in the mode of vibration.
Sound waves are longitudinal, while light waves are transverse. Light waves consist of vibrations of the ether at right angles to the line of motion. To illustrate the reasoning that has led to this conclusion, suppose a rope to be passed through two vertical gratings. (See Fig. 411, 1.) If the rope be set in transverse vibration by a hand, the waves produced will readily pass through to the gratings P and Q and continue in the part extending beyond Q. If, however, Q is at right angles to P, no motion will be found beyond Q. Now if a stretched coiled spring with longitudinal vibrations should take the place of the rope, it is evident that the crossed position of the two gratings would offer no obstacles to the movement of the vibration.[Pg 445] In other words, crossed gratings offer no obstruction to longitudinal vibrations, while they may completely stop transverse vibrations.
Important Topics
1. Interference of light: evidence, reasoning involved, illustration.2. Polarization of light: evidence, reasoning involved.
3. Nature of light, differences between sound and light.
Exercises
1. Make a list of the differences between sound and light and state briefly the evidence upon which the knowledge of these differences is based.2. Why will a thickness of film that will produce interference of red light be different from that producing interference for green or blue?
3. Using the formula n = v/l compute the vibration rate for violet light if its wave length is considered as 0.00004 cm.
4. Explain how the fact of polarization affects the wave theory of light.
5. Show how it is possible by comparing the spectrum of the sun with that of a star to tell whether the star is approaching or receding from the earth.
Review Outline: Light
Light; speed, source, medium.Straight Line Motion; shadow, umbra, penumbra, eclipse, image.
Photometry; Law of intensity, candle power, foot-candle.
Mirrors; Law of reflection; image?real, virtual; plane, curved, parabolic, mirrors.
[Pg 447]
Refraction; cause and effects; plate, prism, lens; total reflection.
Lenses; six forms, principal focus, center, lens equation, 1/F = 1/Do + 1/Di.
Optical instruments; eye, defects and correction, camera, microscope, etc.
Spectra; 3 kinds, dispersion, production of color effects, spectroscope, uses.
Nature of Light; wave theory, interference, polarization, significance.
Comments
Post a Comment