ELECTRIC RAILWAYS FROM THE ENGINEERING POINT OF VIEW

When electric railways were first considered, the natural tendency of engineers was to follow the existing model and merely substitute electric locomotives for steam locomotives. In point of fact, however, the engineering method now adopted is an evolution from the tramway model, not from that of the typical railway.
A certain advantage was, of course, to be gained by replacing steam locomotives by electric ones. The greater 'starting torque' of the electric locomotive enables it to get a train up to full speed more quickly; and the capacity of the electric motor for taking heavy overloads assists the electric train in surmounting heavy gradients. Some advantage was also gained by producing all the power at a central source, instead of having a large number of steam locomotives, which are really power stations on wheels. But the electric locomotive had still to be made heavy enough to get sufficient grip of the rails; it had to haul its own dead weight; and it had to be made powerful enough to tackle a full-sized train on the steepest gradient with its complement of passengers, although the general demand upon it might be considerably less than that maximum.
The electric locomotive, in short, was an advance upon the steam locomotive, but it did not get past the essential drawbacks of the locomotive system. A locomotive is most economical when hauling full trains for long distances at a uniform speed; it is essentially a long-distance machine. The first demand for electrification came, however, from suburban railways, where the stations are close together and where, therefore, the speed is constantly varying from zero up to a maximum and back to zero again. The traffic also fluctuates between extreme limits; and there is obvious waste in having to run heavy locomotives and trains backwards and forwards during the slack hours. There was therefore a demand for some method of propulsion which would enable the length of trains and the consumption of power to be adjusted more closely to the variations in the traffic.
A step in the right direction was taken when the locomotive equipment was placed on a car, thus utilising the weight of the passengers to increase the adhesion on the rails. But the full advantages of electric traction were not realised until what is known as the 'multiple-unit' system was adopted.

The idea underlying this system is quite simple. If, instead of concentrating the motive power on a single locomotive or driving unit, we distribute it among the cars forming a train, we get the multiple-unit system. An electric tramcar and a trailer attached to another tramcar and trailer, with a third tramcar behind, would form a model for a multiple-unit train. By connecting the electrical equipments on the three tramcars—front, middle, and rear—it would be possible to control the train from either end or from the middle.
This is the principle upon which all the electric railways in Great Britain are now worked, with the exception of the City and South London Railway, where locomotives are still used and where the trains are comparatively short and light.
It will be seen that each multiple-unit train is readily divisible. A single motor car may be run, or a car with one or two trailers, or a long train made up of as many motor cars and trailers as the platforms will accommodate. And whether the trains are long or short, the power absorbed is in proportion to the length of the train and the load of passengers. By this simple means power is economised, and the railway engineer is able to reduce the proportion of idle rolling stock.
The adjustment of the length of trains to the fluctuations of the service is made easier by the absence, in the multiple-unit system, of the necessity of shunting at the termini. As a multiple-unit train can be controlled from either end, a more frequent as well as a more flexible service can be run. With steam traction the number of trains which may enter or leave a terminus is limited by the time occupied in shunting and by the necessity of leaving lines of rails free for that operation. With an electric train on the multiple-unit system, no more time is lost than the few seconds necessary for the driver to walk from the front of the train to the rear, which then becomes the 'front.' No lines have to be kept open for shunting locomotives, so that the available accommodation for trains is considerably increased. Some of the London railway companies have spent enormous sums in enlarging their terminal accommodation and have found that it is still inadequate to the demands of the 'rush' traffic. Electric traction therefore offers them an improvement of enormous value without the expenditure of a penny on station alterations.
The crowning advantage of electric traction lies, however, in the more rapid acceleration which it affords. We have already seen how important this item is on tramways. It is still more important on suburban railways, where a high average speed, in spite of frequent stops, is a vital matter.
On the District Railway the rate of acceleration in the old steam days was about 6 inches per second per second. It was, in fact, so low that the trains could not reach a fair speed before the brakes had to be applied to bring the train to a stop at the next station. With electric traction the rate of acceleration has risen to about 18 inches per second per second. On the Liverpool Overhead Railway a rate of 36 inches per second per second was reached in certain tests. Heavy starting currents are, of course, necessary to bring a train from rest to full speed at such a rapid rate, but it is quite possible for the electrical engineer, without being unduly extravagant in current, to accelerate a train more quickly than the passengers would find comfortable.
The practical result of rapid acceleration (combined with rapid braking) is not only to give a higher average speed but also to enable a more frequent service to be run. Owing to the block system on railways it is impossible for trains to follow each other closely in the manner of tramcars; and it is therefore of cardinal importance that no train should occupy a block for one second more than is necessary. Rapid acceleration becomes all the more important in this respect because of the difficulty of setting down and picking up passengers quickly. This difficulty is overcome in part by using saloon carriages with middle and end doors, in place of compartment carriages. At first the District Railway tried to help matters by operating these doors pneumatically, but the mechanism became unpopular after a number of late-comers had been pinched by closing doors. The management has reverted to hand operation; and it has probably achieved more by educating the public to move quickly than it would have gained with its too-perfect mechanical system.
London travellers have become so accustomed to entering and leaving trains quickly that it is possible for an observer to distinguish strangers by their slower movements on an underground railway. Thus the passenger, as well as the service, has been 'speeded-up.' The more frequent service of trains with a higher average speed would not have been possible, however, without an improvement upon the old methods of signalling. There is no need to dwell upon the weakness of the human element in railway signalling; and it will be clear even to the layman that the strain of handling traffic with a headway of one minute and a half, or less, would be more than men could stand. Automatic signalling had therefore to be adopted to obviate the risk of disaster.
Each train, as it leaves a block or section, 'clears' the signals for that block; and when any train attempts to enter a block against signals, the current is automatically switched off and the brakes applied. The system is so perfect that, in spite of the enormous traffic worked under it, there has been no failure and no accident. It is, of course, costly to install; and its cost can be justified (financially) only when the traffic is very heavy—that is to say, when the conditions make it almost a necessity.
The supply of electric power to electric railways is organised on practically the same lines as in the case of tramways. That is to say, current is generated at a central station, transmitted at high pressure to various sub-stations, and supplied from there at working pressure through 'feeders' to each section of the system. In the case of the 'Underground' system, most of the power is taken from a single huge electric station at Chelsea. Current from that station drives trains as far west as Wimbledon, Hounslow, and Ealing, as far north as Highgate and Golder's Green, and as far east as Barking.
This is a magnificent example of the concentration which gives economy. If each of the underground railways forming the system had erected its own generating station, the total initial outlay, on land, buildings, and machinery, would have been greater, and the cost of current would have been higher, owing to the smaller output and the more irregular demand which a single railway affords. The ideal electric power station is one which is constructed with the largest generating units and produces current at its maximum capacity throughout the twenty-four hours of each day. The Chelsea power station is nearer the ideal than a smaller one supplying a short railway could be. And a station of the latter class is, it may be noted, nearer the ideal than the arrangements on a steam railway, where the sources of power are scattered in hundreds of locomotives.
The concentration of power is therefore one of the many factors which have enabled electric railways to give a vastly improved service at lower fares.
With two exceptions—to be considered in the next chapter—the electric railways of Great Britain are constructed on the 'third-rail' system. They are thus a reversion to—or, rather, a survival of—the original type adopted by Siemens in 1879. The 'third-rail' is carried on insulators a few inches outside the track rail; and the motor cars are provided with a 'brush' or 'shoe' which slides along it and collects the current. In the centre of the track there is generally a second insulated rail to carry the return current, as it is more convenient, under railway conditions, to have a conductor independent of the track rails than to follow the tramway plan of using the rails 'bonded' together. In stations and at crossings the third or 'live' rail is protected by a wooden board in order to reduce the risk of shock to anyone falling on the line or walking upon it. The board is placed high enough over the rail to allow the shoe to pass freely.
As regards the motor equipment on the cars, tramway models have been followed very closely. The 'series-parallel' system of control is again adopted in order to get the high starting torque which gives rapid acceleration with moderate current consumption. The course of the current is again from the live rail, through the controller, through the motors, and thence to the return rail. The controller itself is more or less on the tramway principle; and the main modification in it is the arrangement which enables all the motors on a multiple-unit train to be operated by a single controller. This is done by connecting the controllers electrically and using electric power so that they all work in unison. Some companies use, for this purpose, compressed air controlled by electricity instead of electric power alone, but in both cases the principle is essentially the same.
Considered as a whole, the difference between a tramway and an electric railway on the third-rail system is a difference in degree, not in kind. The traffic is greater and the speeds higher, but both serve the purposes of comparatively short-distance transit. Indeed, within certain limits they compete with each other.
There remains to be considered another type of British electric railway which points the way to the extension of the new mode of traction to main line railways.

By ADAM GOWANS WHYTE, B.Sc.



Comments

Popular posts from this blog

Solution : Hydrogen atom - Corrected Exericises on Gauss - electromagnetism

INVASION OF THE SKY - MACHINES

TRADITIONAL INDUSTRIAL ARTS DESIGN - PRACTICAL METHODS FOR STUDENTS, TEACHERS, AND CRAFTSMEN - BY WILLIAM H. VARNUM 1916